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Introduction 

There is general agreement now among academics and market practitioners that the 
Heath-Jarrow-Morton (HJM) approach to term structure modeling is the most elegant of 
all term structure models. For pricing and risk managing interest rate related contingent 
claims, the HJM model has many desirable features: (1) it’s automatically arbitrage free 
by construction--there’s no need to calibrate the model to the current yield curve, (2) 
yields can be made strictly positive in a wide range of settings, (3) volatility parameters 
are closely related to market volatilities such as historical yield volatilities or implied 
volatilities from interest rate options, and (4) it can accommodate arbitrary number of 
factors in a straight forward way. However, since HJM models the dynamics of the yield 
curve directly, the dynamics of individual rates are generally non-Markov1. It’s therefore 
difficult to apply HJM to a PDE or tree based pricing framework. Monte Carlo/simulation 
based approach under HJM is generally the pricing method of choice among market 
pratitioners, which is called for in any case for pricing complex interest rate derivatives 
such mortgage-backed securities. In this note, we describe in simple terms how HJM 
model can be derived from simple no arbitrage conditions. We also describe in detail how 
model parameters are determined and how they are related to market observables. We 
will concentrate mostly on the lognormal specification of the HJM model and show how 
it’s related to its close “cousin”--the recently developed Brace-Gatarek-Musiela (BGM) 
model. 

Heath-Jarrow-Morton Model 

Unlike the original Black-Scholes approach, i.e. coming up with a PDE which 
incorporates the market price of risk, the “modern” approach to derivatives relies on the 
existence of martingles2 as the condtion of no-arbitrage. Here, we follow the martingale 
approach in our derivation of the HJM model. 

For the term structure of interest rates, first let’s define: 
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where )(tr is the instantaneous short interest rate, and also define 

 ≡),( TtB  price of a zero-coupon bond paying $1 at time T 

then it’s simple to show3 that 

                                                             
1 A process that is Markov roughly means that it has no “memory” of the past. Under HJM, the forward 
yield curve is Markov, however. But this theoretical property of HJM does not really have any practical 
implications.  
2 A martingle is stochastic process that displays no drift. In other words, its future expectation is its current 
value. 
3 See, e.g., Rebonato (1996). 
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is a martingle under the risk-neutral probability measure. In other words, under the risk-
neutral measure i.e., a probability measure under which one can not make risk-free profits 
by buying and selling bonds 
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where we use []QE  to indicate the expectation is taken under the risk-neutral measure4.  

Assume the stochastic differential equation (SDE) for the discount bond price is 
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β
is a martingle under the risk-neutral measure, i.e., it should display no drift, 

therefore we have )()( trt =µ . With this condition, we set out to find the drift condition 
for the SDE satisfied by the forward rate ),( Ttf : 

   )(),(),(),( tdWTtdtTtTtdf σα +=   

where drift ),( Ttα , and volatility ),( Ttσ can depend on the forward rate itself.  

Since 
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4 Equation (1) is often referred to as the “tower” property of no-arbitrage, as it reminds one of a series of 
bond prices that are “chained” together.  
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As we knew earlier that the risk-neutral drift of ),( TtB is )(tr , which would then give us 

    2
2
1 )),((),( TtTt ∗∗ = σα  

or 

    
2

2
1 ),(),( ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∫∫

T

t

T

t

duutduut σα     (2) 

this is equivalent to 
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Equation (3) means that under the risk-neutral probability measure, the drift of the 
forward rate process is completely determined by the volatility function. The SDE for the 
forward rate process is then 

   )(),(),(),(),( tdWTtdtduutTtTtdf
T

t

σσσ +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∫   (4) 



 5 

This is the celebrated Heath-Jarrow-Morton theorem on the term structure of interest 
rates. 

The key input required by the HJM model is the specification of the forward rate 
volatility function ),( Ttσ . When the volatility function is chosen as a deterministic 
function of calendar time t  and maturity T, it can be shown that the HJM model often 
leads to closed-form solutions for options on discount bonds. The popular Hull-White 
model, in fact, is consistent with the following parameterization of the volatility function: 

    ))(exp(),( 0 tTTt −−= λσσ  

where 0σ and λ are constants. However, when the volatility function is deterministic 
(often referred to as Gaussian HJM), there’s a finite probability that yields can become 
negative5.  An alternative specification of the volatility function is to make it dependent 
on the level of the rate itself, e.g., 

    ),(),(),),,((),( TtfTtTtTtfTt γσσ =⇒   (5) 

where ),( Ttγ is a deterministic function of t and T. Although yields are guaranteed to be 
strictly positive in this case, but as pointed out in the original HJM paper, the lognornal 
condition of (5) would lead to exploding forward rates before T.  

The exploding forward rate problem can be avoided if one chooses to work with 
discretely compounded forwards instead of continously compounded forward rates that 
we have been using so far. Also, some recent developments have shown that not only 
yields can remain stable under the lognormal specification when forward rates are made 
to be discrete, options on discount bonds can be priced under closed-form formulas as 
well. This is significant because the parameters of the HJM model can be chosen to 
match many liquid option prices relatively easily. The following section discusses a 
version of HJM for discretely compounded forward rates.  

Brace-Gatarek-Musiela Model6 

Recall that we have established the stochastic processes for the (continuously 
compounded) forward rate and the discount bond price follow: 

  )(),(),(),()(),( tdWTtBTtdtTtBtrTtdB ∗−= σ     
  )(),(),(),(),( tdWTtdtTtTtTtdf σσσ += ∗     (6) 
  

where the volatility of discount bond price ),( Tt∗σ is related to the volatility of 
(continuously) forward rate ),( Ttσ through 

                                                             
5 Market practitioners often dislike negative rates, regardless of how small a probability there is. 
6 For the sake of brevity, some details of the derivation in this section are omitted. See Brace et al (1997) 
for more details. 
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if we re-parameterize the time indices with current time t and time to maturity tT −=τ , 
re-write forward rate as ),(),(),( ττ +== ttfTtftr , and bond price as 

),(),(),( ττ +== ttBTtBtD , then it can be shown that (6) now become 
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define ),( τtL as the forward LIBOR rate at time t for a δ -period forward rate maturing at 
δτ ++t  (where 25.0=δ  for US$ LIBOR), and we know that 
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then using (6)’ it can be shown that ),( τtL follows the SDE 
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),(1
),(),(),(),(

τδ
τγτδ

τσδτσ
tL
ttLtt

+
=−+ ∗∗    (7) 

then 

dt
tL
ttLttLttLtdL ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+
++

∂

∂
= ∗

),(1
),(),(),(),(),(),(),(

22

τδ
τγτδ

τσττγτ
τ

τ                

    )(),(),( tdWtLt ττγ+  

returning to HJM valuables t and T, set 
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           (8) 

given ),( tTt −γ , equation (8) and (7) specify the dynamics followed by the discretely 
compounded forward rate ),( tTtK − , and is known as the Market Model of interest rates 
(or the BGM model). 

Brace, Gatarek, and Musiela (1997) showed that under the so-called δ+T forward 
measure, equation (8) can be simplified to 

   )(),(),(),( tdWTtKtTtTtdK T δγ +−=     (9) 

where through a change of measure, the forward rate process has been made driftless, i.e., 
a martingle.  The change of measure is accomplished by a shift of the Brownian motion 
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and a change of numeraire from the “rolled-up” money market account to a discount 
bond. The topics of change of measure and numeraire are beyond the scope of this note7, 
but suffice it to say, through some “fancy” stochastic calculus, we could manage to 
greatly simply the SDE followed by the forward rate to something as simple as (9).  

Our new measure, the forward measure, uses the δ+T maturity discount bond as the 
numeraire, which means that if the price of an asset )(tX is a martingale under the 
forward measure, then 
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where we used []TE  to denote the expectation taken under the T-maturity forward 
measure. For an LIBOR caplet settled in arrears, we would then have 

  [ ]++
+

++ −=⎥
⎦

⎤
⎢
⎣

⎡

++

−
=

+
)),((

),(
)),((

),0(
)0(

k
TkTT RTTKE

TTP
RTTK

E
TP

C δδδ

δδδ
  

where kR is the strike rate. From (9) we know ),( TTK  is lognormally distributed with 
time-dependent volatility ),( tTt −γ , it follows that  

 ))),0(),0(()),0((),0()(,0()0( TThNRThNTKTPC kT ρδδδ −−+=+  (10) 

where 

                                                             
7 See Rebonato (1996) for an intuitive discussion of numeraire and how it’s related to probability measures. 
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and 

   ∫ −=
T

dssTsT
0

22 ),(),0( γρ      (12) 

 
Equation (10) is the familiar Black Caplet Formula. 
 
 
Calibrating HJM/BGM 
 
We have shown that a lognormal version of the HJM model can price the caplet via the 
Black caplet formula. As we mentioned earlier, the only unknown in the HJM model is 
the volatility function, which in the case of discretely compounded lognormal model, is 
connected to the Black caplet volatility via 
 

   ∫ −=⋅=
T

Black dssTsTTT
0

222 ),()(),0( γσρ    (12)’ 

 
where the Black volatility )(TBlackσ  can be obtained directly from market makers of cap 
and floors, or easily inferred from cap and floor prices. The Black volatility is sometimes 
referred to as the terminal volatility, and the HJM volatility function ),( tTt −γ is 
sometimes called the instantaneous volatility.  
 
It’s obvious from (12)’ that the Black volatility is a time average of the instantaneous 
volatility function. Given just the average volatility, it’s clear that the instantaneous 
volatility function is not uniquely determined. However, for any given ),( tTt −γ that 
satisfies (12)’, caps and floors will be priced exactly. The easiest thing to do is to make 

),( tTt −γ  independent of calendar time t, and in this case, we simply have  
 
   )()(),( TTtTt Blackσγγ ==−      (13) 
 
Although it’s clear that with this choice of the instantaneous volatility, calibration for the 
HJM model can be easily accomplished, but there’re potentially undesirable effects if one 
choose to ignore calendar time. The most serious being that it would imply a forward rate 
volatility curve that’s shifting backwards as time goes by. For the US$ volatility curve, 
this would mean, e.g., the volatility hump would disappear eventually (in this case after 
about two years).  But in practice as one might notice that the shape of the forward rate 
volatility curve has stayed fairly stable through the years, and it has always displayed a 
hump at around two years (i.e., 2=− tT ) which would show up in both implied 
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volatility curve and volatility curve from analyzing historical data using principle 
component analysis8.  
 
A choice of ),( tTt −γ that would make the volatility curve stable is to set 
 
    )(),( tTtTt −=− γγ      (14) 
 
i.e., the instantaneous/HJM volatility depends only on the remaining time to maturity. 
This is sometimes referred to as the volatility function being homogenous. Calibrating the 
HJM/BGM model using a homogenous volatility function requires more effort for 
obvious reasons. One typically would have to come up with a parameterized function for 

)( tT −γ  that would accommodate the humped shape of the volatility curve and a 
declining volatility at longer maturities as observed in the market. A potential draw back 
using a homogeneous volatility function is that it might not fit the Black volatility 
perfectly if the Black volatility would to decline too rapidly as Rebonato (1996) pointed 
out. But this is less of a concern in general because (1) a volatility curve rarely undergoes 
a steep decline at long maturities (it typically rises at short maturities), and (2) one in 
general does not have to match perfectly the Black volatilities quoted by OTC market 
makers as those generally carry fairly big “measurement” errors. Since a typical 
application that would call for a HJM type model is to price exotic derivatives, one in 
general could live with a good but not perfect calibration of cap/floor prices, and put 
more emphasis on underlining (rate) distribution assumptions and possibly correlation 
structures (which we will discuss in the next section).  
 
A third choice would be to chose a HJM volatility function that’s “almost” homogeneous, 
e.g.,  
 
    )()(),( tTgtctTt −=−γ     (15) 
 
where )(tc is only weakly dependent on t and very close to one. This choice of volatility 
function and other similar variants will fit the Black volatilities exactly in almost all 
situations, and are sometimes explored by market practitioner. A weakness of this 
approach is that it has too many independent variables (or degrees of freedom), and the 
“perfect fitting” parameters sets could be highly unstable. 
 
 
 
Multi-Factor HJM 
 

                                                             
8 See e.g., Zhu (1999) for an explanation of how to extract volatility curves using principle component 
analysis. 
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Although we have so far only discussed the one factor version of the HJM model, one of 
the strengths of HJM is actually its easy extension to multi-factor. The derivation of 
multi-factor HJM basically follows the same step as the single-factor case. For an N-
factor HJM, the forward rate process would be 
 

  ∑∑ ∫
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t
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where )(tWi , Ni ,...,1= are N independent Brownian motions. The volatility calibration 
is straightforward as well. For the two-factor case, e.g., one would have 
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A typical application that would call for a multi-factor HJM is to price a derivative with 
payoffs dependent on the (imperfect) correlations between forward rates.  To keep the 
number of degrees of freedom manageable, a popular practice is to “factor out” the 
correlation piece of the volatility functions, and only use one function to account for the 
over all volatilities. To illustrate this, consider a three-factor HJM with the following 
volatility functions: 
  
    )(),(),( 11 tTtTtgTt −−= φγ   
    )(),(),( 22 tTtTtgTt −−= φγ  
    )(),(),( 33 tTtTtgTt −−= φγ  
 
where ),( Ttg would satisfy 
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and )(3,2,1 tT −φ are constrained by 
 
    1)()()( 2

3
2
2

2
1 =−+−+− tTtTtT φφφ    (16) 

 
Its easy to show that the correlation between forward rates ),( 1Ttf  and ),( 2Ttf is given 
by 

        
)()()()()()( 231322122111 tTtTtTtTtTtT −−+−−+−− φφφφφφ   (17) 

 
i.e., independent of ),( tTtg − . Here we have implicitly assumed that correlations are 
time-homogeneous.  
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A set of correlations (perhaps from historical data) can be used together with (17) to 
determine our φ  functions. The market practitioners typically choose the functional form 
of φ ’s from a set of elementary functions. An extremely robust set would be the 
trigonometry functions. In the three-factor case, we would have 
 

    
))(sin())(sin()(
))(cos())(sin()(

))(cos()(

3

2

1

τβτατφ

τβτατφ

τατφ

=

=

=

    (18) 

 
where )(τα and )(τβ are functions of tT −=τ , and can be to be fitted using (17) to the 
correlation data. The nice thing about (18) is that it satisfies the constraint (16) for any 
choice of angle functions )(τα  and )(τβ .  
 
Principle Component Analysis (PCA) was used to obtain the actual functional form of the 
factors. Appendix A at the end of this document provides and introduction of PCA, and 
an actual example of how PCA is performed on the yield curve.  
 
Actual analysis of the Principle Components of the forward curve can be complicated by 
the type of yield curve smoothing method one chose to use. Figure-1 shows a typical 
result9 from a fit to forward rate correlation data. We see that 1φ  can be interpreted as 
contributing to a parallel movement of the forward curve, 2φ is responsible for a twist of 
the yield curve, and 3φ  corresponds to a “bending” mode. 
 

                                                             
9 Using swap rates from 1998-2000.  Actual analysis of the Principle Components of the forward curve can 
be complicated by the type of yield curve smoothing method one chose to use. For the results shown in 
Figure-1, we use a three-factor empirical term structure model to generate daily yield curves and perform 
PCA on the forward curves. Alternatively, one can also perform principle component analysis 
on the monthly change of the forward curve (using any smoothing method), but that usually would require 
more data. 
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Figure-1 1φ (top), 2φ (with squares), and 3φ  (with diamonds) from fitting 
forward rate correlations  

 
 
 
Model Implementation Details  
 
 
We follow the steps outlined in John Hull10 for our model implementation at Portfolio 
Management. Define: 
 

)(tFk : Forward rate between kt and 1+kt as seen at time t. expressed with a 
compounding period of 25.01 =−= + kk ttδ  

)(tm : Index for the next reset date at time t; this means that )(tm is the 
smallest integer such that )(tmtt ≤  

)(, tqkς : Volatility of )(tFk at time t for the qth factor 
 

                                                             
10 John Hull and Alan White, Forward Rate Volatilities, Swap Rate Volatilities and the Implementation of 
the Libor Market Model. August, 1999. http://www.rotman.utoronto.ca/~amackay/fin/libormktmodel2.pdf 
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If forward rates are assumed to be lognormal, the discretization equation for the forward 
rates is: 
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For a normal model, we will have: 
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Current production version of the model used for daily MSR valuation at Portfolio 
Management is a 3-factor normal implementation of BGM model11. The factor loadings 
for the 3-factors follow equation (18) and Figure-1 described in the previous section, and 
the volatilities are assumed to be a non-homogenous form: 
 
 kkk tt Λ= )()( ,11, φς   
 kkk tt Λ= )()( ,22, φς  
 kkk tt Λ= )()( ,33, φς  
 
ie, kΛ depends only on the forward rate index, but not calendar time t. The rationale for 
picking a non-homogenous form of the volatility function is its ease of calibration (as 
show in equation (13)) and it is consistent with how market participants’ view of the 
evolution of volatilities. When calibrated to cap vols, kΛ are simply the caplet vols 
themselves12.  
 
Alternatively, one can also calibrate to a swaption vol series or any swaption vol grid. 
Although no closed form formula exists for the value of a swaption under the BGM 
model, extremely accurate approximations can still be obtained. Following that of John 
Hull, the swaption volatility can be approximated as: 
 

                                                             
11 In valuing the MSR asset, since both prepayments and cash flows for the servicing will depend on the 
long and short end of the yield curve, we believe a multi-factor interest model is better suited for modeling 
the future cash flows of the asset. 
12 This is part of the attractiveness of the BGM model since in this case one can use both the yield curve 
and caplet vol curve as inputs to the model and therefore no iterative calibration procedures are needed. 
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Where the relevant swaption is an option on a swap lasting from nt to 1+Nt with reset dates 
at times Nnn ttt ,...,, 1+ , and, 
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Equation-21,22 basically relate the short rate volatilities to that of long rate volatilities 
using the shape of the yield curve. By the complexity of the relationship, one would need 
some kind of iterative procedure when calibrating the short rate volatilities given the long 
rate volatilities.  
 
Current production implementation of the BGM model in Portfolio Management 
calibrates to the series of x into 10-yr swaptions. We started out assuming a piecewise 
linear function for the short rate vol curve with the same number of knot points as the 
swaption series. These knot points are solved using a non-linear least square method by 
minimizing the error between the calculated swaption vol (equation-21) and that of the 
market. To ensure smoothness of the piecewise linear vol curve, the objective function in 
least square fitting includes penalty terms to make the change of knot points in the 
piecewise curve less “jumpy”: 
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where ip are the knot pints for the piecewise linear curve, and the weights w can be 
obtained empirically to constrain smoothness13.  
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Appendix A 
 

Principle Components Analysis of Risk Factors 
 
When dealing with multiple, but correlated risk factors, the Principle Components 
Analysis (PCA) technique can be used to transform the original risk factors into a new set 
of risk factors that are independent of each other and can be ranked by their relative 
importance (hence the meaning of “principle components”). In this note, we give a 
simple and intuitive explanation of how this can be accomplished. 
 
Let’s consider the case of two risk factors. The dynamics of their statistical processes can 
be described by the following simple equations: 
 

)()(
)()(

2222

1111

tdWdttdX
tdWdttdX

σµ

σµ

+=

+=
       (1) 

 
where 1µ , 2µ are the drift rates and 1σ , 2σ are the standard deviations for our two risk 
factors 1X , 2X . 1dW and 2dW  are correlated random (gaussian) deviations with 
correlation coefficient ρ  and variance dt . In practice, one is most interested in the 
standard deviations 1σ  and 2σ . These can be estimated from the time series of 1X , 2X . 
For example, by taking the expected value of 2

1)(dX , we would have 
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from gaussian statistics, we know dtdW ≅1  , dtdW ≅21)( , and therefore for small dt , 
the first two terms in the above equation can be dropped, and we will have 
 
   [ ] [ ] dtdtEdXE 2

1
2
1

2
1 )( σσ =≅  

 
This also means that for the purposes of studying volatilities, one can basically ignore the 
drift 1µ , or in other words, set 01 =µ . Our simplified version of equation (1) can be 
written in vector form as 
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What we wish to do is instead of working with correlated random (gaussian) variables 1W  
and 2W , we find two new random variables 1

~W  and 2
~W , and specify equation (2) in terms 

of the new random variables. A simple way to express this to write (2) as 
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rearranging it slightly, we could also write (3) as 
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Multiplying the column vectors in (4) by their corresponding row vectors, we have 
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Taking the expectations (average) on both sides, using [ ] [ ] dtWdEdWE == 2

2.1
2

2,1 )~()( ,  

[ ] dtdWdWE ρ=21 ,  and [ ] 0~~
21 =WdWdE ,  we have 
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dropping out dt ,  we can rewrite the above simply as 
 
     TASA=Σ      (5)’ 
 
where Σ is the familiar covariance matrix, and S is a diagonal matrix.  From linear 
algebra, we know equation (5) can be solved as a common eigenvalue problem, or 
sometimes referred to as the diagonalization of a matrix14. Since the covariance matrix is 
symmetric, we know that A is orthogonal, i.e., TAA =−1 . (5)’ can also be written as 
 

                                                             
14Numerous algorithms for solving the eigenvalue problem can be found in Press et al (1992), the most 
famous one being the Jacobi method. 
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AAS TΣ=      (6) 
 

The eigenvalues make up the diagonal matrix S, and it’s not difficult to see that equation 
(6) also holds for more than two risk factors, i.e., covariance matrix of any size. We 
interpret the largest eigenvalues and its corresponding eigenvector (which is the 
corresponding column vector in matrix A) for the covariance matrix as the 1st principle 
component. Similarly, one would also have 2nd principle component, 3rd, etc for other 
eigenvalues arranged in descending order. The weight of principle component i  is 
defined as the weight of eigenvalue 2

is  among all eigenvalues: 
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One notices that so far we have expressed our eigenvalues as the square of a real number. 
This is justified since a well behaved covariance matrix is positive definite15, therefore as 
we know from linear algebra that all eigenvalues of a positive definite matrix are strictly 
positive16. 
  
It’s time to look at a simple example. Suppose we have  
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Diagonalizing this matrix gives  
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This implies that the weight of the 1st principle component is 0.9 (or 90%), and equation 
(3) would be 
 
                                                             
15 Among other properties, positive definite would guarantee, for example, the absolute value of off-
diagonal elements of the covariance matrix is not too large as to imply larger than one absolute correlation 
coefficients. 
16 When diagonalizing a covariance matrix of high dimension using certain numerical algorithms, 
depending on the precision of the iterative procedure, it’s sometimes possible to get very small negative 
eigenvalues. In that case, it’s always safe to assume that those eigenvalues/eigenvectors do not have much 
weight and can be ignored. 
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The 1st principle component in this case can also be interpreted as the (independent) 
random factor 1

~W , and one should expect it to account for 90% of the variance. 
 
PCA of Treasury Rates 
 
Next we look at a more realistic example by analyzing the covariance matrix of Treasury 
rates. 
 
The most actively traded Treasuries are the seven newly issued “on-the-run” Treasuries 
which consist: one-, three-, and twelve-month bills, two- and five-year notes, and 10- and 
30-year bonds17. Although at any given day, there are no exact two-, five-, 10-year, etc 
Treasuries trading except the days when US Treasury Department are auctioning off new 
Treasuries, most people are comfortable working with the so-called “generic” Treasury 
rates. These are the yield-to-maturities (yields in short from now on) of exact two-, five-, 
10-year, etc. bonds carefully extrapolated from actual on-the-run yields and published 
daily after market close by the Federal Reserve Bank of New York. These yields are 
often referred to as the CMT (Constant Maturity Treasury) yields, and they are more 
useful than the yields of real on-the-run bonds since their changes can be compared 
“fairly” on a day to day basis. This is because an actual bond would “age”, and its yield 
next day would be a yield of a different maturity18. 
 
Table-1 lists the annualized percentage volatilities of the yields of seven Treasuries for 
260 trading days prior to October 1998, and Table-2 is the correlation matrix. Here we 
prefer to list the correlation matrix instead of the covariance matrix since the correlation 
matrix can be thought of as a “normalized” covariance matrix, and therefore its easy to 
visualize the covaraince structure. Table-3 lists the factor weights for the principle 
components in descending order. As we see, the first three principle components accounts 
for about 95% of the total, or in other words, the first three principle components can 
explain 95% of the total variations of the Treasury yield curve. 
 
Figure-1 plots the volatility curves, or sometimes referred as the factor loadings for the 
first three principle components (factors) for the Treasury yields. The first factor is 
responsible for the parallel shift of the yield curve, the second factor would produce a 
twist of the yield curve with yields of short and long maturities moving in the opposite 
direction, and the third factor roughly contributes to sort of a bending of the yield curve. 
 

                                                             
17 For a while, there were eight “on-the-run” Treasuries, but US Treasury Department stopped issuing the 
three-year note since May 1998. 
18 In principle, comparing the yield of a bond or note to that of a bill is not strictly “fair” because the yield 
of a bill is a discount yield while a bond yield is sort of an “average” yield with semi-annual compounding 
(see, e.g., John Hull (1997)). But for the purposes of studying the volatilities of yields, we will ignore this 
difference.  
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We see using the principle components analysis on the yields of the Treasuries, the 
movements of the whole yield curve can be reasonably described by three risk factors, 
instead of seven. The stochastic differential equations (SDE) governing the dynamics of 
the yield curve can be simplified from: 
 
   iiii dWdttdR σµ +=)(  7,...,2,1=i  
 
with seven correlated random factors 7,...,2,1=iW , and 21 correlation coefficients (not shown 
above) to a simpler set of SDEs: 
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with three uncorrelated  random factors 3,2,1
~
=iW . 

 
 
 
 

Maturities Volatilities 
0.25 0.227684 
0.50 0.185491 
1.0 0.189358 
2.0 0.229206 
5.0 0.232558 

10.0 0.214586 
30.0 0.148952 

   
 Table-1 Volatilities of Treasury rates (October 1997- October 1998) 

 
 

 0.25 0.50 1.0 2.0 5.0 10.0 30.0 
0.25 1 0.609693 0.601088 0.429643 0.331705 0.280194 0.274538 
0.50 0.609693 1 0.791064 0.620346 0.484432 0.391611 0.309078 
1.0 0.601088 0.791064 1 0.851136 0.754773 0.675219 0.564977 
2.0 0.429643 0.620346 0.851136 1 0.925525 0.849766 0.735161 
5.0 0.331705 0.484432 0.754773 0.925525 1 0.959996 0.847104 

10.0 0.280194 0.391611 0.675219 0.849766 0.959996 1 0.911944 
30.0 0.274538 0.309078 0.564977 0.735161 0.847104 0.911944 1 

 
 Table-2 Correlation matrix of Treasury rates (October 1997- October 1998) 
 
     
 

 Weights 
1 0.706017 
2 0.182824 
3 0.062619 
4 0.023265 
5 0.013225 
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6 0.008928 
7 0.003124 

 
  Table-3 Factor weights for the principle components 
  



 22 

 
Figure-1 Yield Factors 
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Appendix B 

 
Maximum Smooth Forward Curves 

                                  

         
1. Introduction   

                                                  
Building a zero-coupon yield curve from a finite number of coupon-bearing bonds has 
been a basic technique in finance for a long time. However, recent developments of the 
term structure model of interest rates and the proliferation of increasing complex 
derivative products call for “well-behaved “ or “smooth” yield curves. On the other hand, 
how to quantitatively define “well-behaved” or “smooth” yield curves, and further to 
build it is not entirely a trivial matter. 
 
Fundamentally, a yield curve that is extracted from only a finite number of bonds is not 
unique. Different methods or more specifically, the different assumptions of parametric 
forms result in different yield curves.  The most popular method for building the yield 
curve has been the cubic spline interpolation method. Mathematically, the cubic spline 
interpolation formula is a function that fits a given set of data and is continuous through 
the second derivative, both within a data interval and at its boundaries. The application of 
the cubic spline method to fit a yield curve to the prices of U.S.Treasury Securities was 
first introduced by McCulloch (1975). It was later proved that there is no smoother 
function, of any functional form, that fits the observable data points and is continuous and 
twice differentiable at the knot points than a cubic spline. Therefore, if the objective of 
the analyst is to get the smoothest possible yield curve, then the cubic spline of yield 
produces the smoothest possible yield curve. If the objective of the analyst is the 
smoothest possible discount bond price function, then a cubic spline of zero coupon bond 
prices produces the smoothest price curve.  However, the forward rate curve derived from 
the cubic spline approach of yields is not twice differentiable at the knot points, and 
hence, it is not  “smooth” enough from the point of view of forward rates. The lack of 
higher order derivatives of the yield curve is undesirable for most interest rate models.  
 
Recently, Adams and van Deventer defined a criterion for the best fitting yield curve to 
be “Maximum Smooth” for the forward rates. They also introduced a mathematical 
measure of smoothness as an objective criterion for choosing the yield curve smoothing 
methods. According to Adam and van Deventer, the “smoothness” can be mathematically 
defined as the value Z given by the formula 
 

∫ ʹ′ʹ′=
T

sfdsZ
0

2)]([
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where the function )(sf  is a function used to fit the observed data. Based on this criterion, 
i.e., the “Maximum Smoothness” for the forward rate, Adam and van Deventer developed 
a powerful technique to fit yield curves. This technique can be used for fitting the yield 
curve with one explicit function that is both consistent with all the observed points on the 
yield curve and provides the smoothest possible forward rate curve.  
 
In this note, we are going to compare yield curves constructed from methods extended 
from cubic spline and the maximum smoothness approaches. The data we are going to fit 
are the on-the-run U.S. Treasury Securities: Treasury bills with maturities of 3-month, 6-
month, and 1-year, Treasury note with maturities of 2-year, and 5-year, and Treasury 
bonds with maturities of 10-year and 30-year. In section 2, we are going to briefly present 
the algorithm of the cubic spline and various boundary conditions. We will discuss and 
compare the differences of zero-coupon yield curve and forward rate curve constructed 
from applying cubic spline to zero yields and applying cubic spline to zero-coupon prices 
respectively. The results from different boundary conditions are also compared. Our 
results show that yield curve and forward curve constructed from cubic spline of zero-
coupon prices are less oscillating than those constructed from cubic spline of yields.  In 
section 3, we present the algorithm of maximum smoothness of forward rates. The yield 
curve, and forward rate curve built from the maximum smoothness method are compared 
to those built from the cubic spline of yields and cubic spline of price srespectively. We 
conclude that yield curve built from the maximum smoothness of forward rates method 
has much less oscillation in the yield curve than applying cubic spline to yields directly.  

                            

2.  Cubic Spline Method  
 

Assume that we are given a set of data                                            

 
where  i = 1, …, N.  The set of data can be the yields of zero coupon bonds Nyyy ,....,, 21  
at the maturities Nxxx ,....,, 21 , or the price of zero coupon bonds NPPP ,....,, 21  at the 
maturities Nxxx ,....,, 21 . 
 
The objective of cubic spline is to find a function that fits the set of data , and is twice 
differentiable and continuous in the first and second derivatives within all the intervals 
and boundaries. 
 
Without losing generality, a cubic formula can be written as 
                         11 ++ ʹ′ʹ′+ʹ′ʹ′++= jjjj yDyCByAyy  

)( ii xfy =



 25 

where jy ʹ′ʹ′  is the second derivative of )(xf  at knot jx  , and  A , B, C, and D are defined  
as: 

 

 
 
With a formula written in this form, the requirement that function )(xf  and its second 
order derivative is continuous at knots are satisfied. The restrain that its first derivative is 
continuous at knots leads to the equations: 

 
where j = 2, …, N-1.  

These are N-2 linear equations in the N unknown variables jy ʹ′ʹ′ , j = 1, …, N.  Thus we 
need two more equations to solve the unknowns. The additional two equations can be 
obtained by boundary conditions at two ends.  
 
• At the low end of boundary, a natural spline boundary condition is imposed 01 =ʹ′ʹ′y .  
• At the up end, we can impose a natural cubic spline boundary condition: 0=ʹ′ʹ′Ny ,  
      or a flat yield boundary condition: 0=ʹ′Ny   for cubic spline of  yields 
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      for cubic spline of prices.  
 
With these two additional boundary conditions, we can solve the N unknown variables 
and obtained the yield curve that fit the observed market data. 
  
To compare yield curves built from cubic spline of yields and cubic spline of prices, we 
have built yield curves using the on-the-run U.S. Treasury Securities data provided by 
Bloomberg. Table 1 lists the seven on-the-run Treasury Securities traded on March 23, 
1999. 
 
Among the seven types of securities, the last four are coupon-bearing bonds. The cubic 
spline method described so far can only be applied directly to zero-coupon bonds. For a 
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coupon-bearing bond, an iteration algorithm must be incorporated in order to apply the 
cubic spline method. The detailed implementation of this iteration algorithm has been 
described and discussed in Zhu (1999), and in van Deventer and Kenji Imai (1996). An 
alternative way to solve the yield curve of coupon-bearing bonds is to solve the N+1 
nonlinear equations as mentioned in Yekutieli (1999). Here we employ the iteration 
method. 
 
 
Table –1 Treasury Data on March 22, 1999 
 
ID Name Maturity Coupon Market Quotes Present 

Value 
5100 GB3 06/17/1999      0 4.395   98.9501 
5101 GB6 09/16/1999     0 4.445   97.8145 
5102 GB1 03/02/2000     0 4.515   95.6731 
5103 GT2 02/28/2001     5 99.8984   100.211 
5105 GT5 02/15/2004     4.75 98.4297   98.9021 
5106 GT10 11/15/2008     4.75 96.6094   98.2889 
5107 GT30 02/15/2029     5.25 95.4375   95.9596 
 
 
 
Figure 1 shows the yield curves from the cubic spline of yields and the cubic spline of 
prices. In the both methods, the flat yield boundary condition are used. Both yield curves 
have oscillations around 5-year maturity. However, the oscillation in the yield curve from 
the cubic spline of prices is much milder than that from the cubic spline of yields. Figure 
2 shows the forward rate curves from cubic spline of yields and cubic spline of prices. 
Both forward rate curves show wild fluctuations for the maturity ranging from zero to 10 
years. The results illustrate that forward rates derived from cubic spline method are very 
volatile, in addition to the fact that forward rates from the cubic spline method are not 
twice differentiable. 
 

Figure-1 Zero-coupon yield of U.S. Treasury on March 20, 1990 built from different 

methods:  yd(4) is the yield curve built from the cubic spline of price, yd(5) is the yield 

curve is built from the cubic spline of  yield, and yd(knots) is zero-yield at maturities. 
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Figure-2 Forward rate curves of U.S. Treasury on March 20, 1990 built from different 

methods, the dark curve is built from the cubic spline of price, the light curve is built from 

the cubic spline of yield. 
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2. Maximum Smoothing Method 
 
In order to remedy the problems of cubic spline method, Adam and van Deventer came 
up with the Maximum Smoothing method to obtain a “well-behaved”, smoother forward 
rate curve. The forward rate curve obtained by Maximum Smoothing method has the 
following feature: 
 
• The forward rate curve is continuous and twice differentiable. 
• The forward rate is the smoothest curve of any of the family of curve that are 

continuous , twice differentiable, and consistent with the observed data. 
 
It can be shown that the smoothest possible forward rate curve satisfying the above 
requirements consists of a quartic forward rate function that fits between each knot point 
(van Deventer, 1996) 
 
Suppose that we are given a set of prices of zero-coupon bonds NPPP ,...,, 21   with 
maturities Nttt ,...,, 21 .  The Maximum Smoothing forward rate curve is given by 

iiiii atbtctdtetf ++++= 234)( , for ii ttt ≤<−1 ,  i = 1, 2, …., N+1 
where Tttttt NN =<<<<<= +1210 ...0 . 
 
The coefficients ,,,, iiii dcba   and ie  satisfy the following equations 
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where 10 =P , and i = 1, 2, …, N 
 

Thus, we have 5N equations in 5N+5 unknown variables. The additional 

five equations can be obtained by boundary conditions. 

 
• At the low end of boundary, the forward rate curve is instantaneously straight, so that 
     01 =c , 01 =d , and 01 =c . 
 
• At the up end of the boudary, we can either have straight forward rate boundary 

condition  01262)( 2 =++=ʹ′ʹ′ NNNNNN tetdctf ,  

      or flat yield boundary condition 0)(1)(1)(
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( ) 0

)()(
2
1)(

3
1)(

4
1)(

5
1

234
1

1
2
1

23
1

34
1

45
1

5

=++++−

⎭
⎬
⎫

⎩
⎨
⎧ −+−+−+−+−∑

=
−−−−−

NNNNNNNNN

N

i
iiiiiiiiiiiiiii

atbtctdte

ttattbttcttdtte
 

 
With these five additional equations of boundary conditions, we can solve the 5N+5 
unknown variables and obtained the forward rate curve that fits the data of zero-coupon 
bonds. To apply the Maximum Smoothing method to coupon-bearing bonds, we again 
use the iteration method previously mentioned.  
 
Figure 3 shows the yield curve built from the U. S. Treasury data in Table-1 by using the 
Maximum Smoothing method. To compare the Maximum Smoothing method to the 
cubic spline of yields, and the cubic spline of prices, we have also plotted the yield curves 
by the last two methods. Our results demonstrate that yield curve constructed from the 
maximum smoothing method is much smoother than that constructed from the cubic 
spline of the yields. On the other hand, it is surprising that the yield curve built from the 
maximum smoothing method is very close to that built from the cubic spline of prices at 
time range  110 << t  years. Figure 4 shows the forward rate built from the maximum 
smoothing method and those built from the cubic spline of the yields and cubic spline of 
prices. It is obvious that the forward rate curve from the maximum smoothing method is 
smoother that those from the last two methods.  
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Figure-3  Zero-coupon yield curves of U.S. Treasury on March 23, 1999 built from different 
methods. yd(7):maximum smoothness; yd(4): cubic spline of price; yd(5) :cubic spline of yield; 
yd(knots): zero yield at maturities of bonds. 
 

 
 
Figure-4  Forward rate curves of U.S. Treasury on March 23, 1999 built from different methods. 
fwd(3): maximum smoothness; fwd(2):cubic spline of price; fwd(1):cubic spline of yield. 
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